Automatique et ordinateurs

MINIMIZATION OF FREQUENCY-WEIGHTED /-SENSITIVITY
FOR MULTI-INPUT/MULTI-OUTPUT LINEAR SYSTEMS
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The problem of minimizing a frequency-weighted l,-sensitivity measure subject to
l,-scaling constraints is considered for multi-input/multi-output (MIMO) linear discrete-
time systems. The constrained optimization problem is converted into an unconstrained
optimization problem by using linear-algebraic techniques. An efficient quasi-Newton
algorithm with closed-form formula for gradient evaluation is then applied to solve the
unconstrained optimization problem. Finally, the optimal system structure is
constructed by employing the resulting coordinate transformation matrix that minimizes
the frequency-weighted I-sensitivity measure subject to the scaling constraints.
A numerical example is also presented to illustrate the utility of the proposed technique.

1. INTRODUCTION

The synthesis of a multi-input/multi-output (MIMO) linear discrete-time
system with a given transfer function matrix is an important research topic, since
the state-space equations corresponding to the transfer function matrix are not
unique. Naturally, among the infinite number of realizations of the transfer
function matrix, it is often desirable to identify a state-space realization that
minimizes a suitable sensitivity measure. When realizing a fixed-point state-space
description with finite word length (FWL) from a prescribed transfer function
matrix with infinite accuracy coefficients, the coefficients in the state-space
description must be truncated or rounded to fit the FWL constraints. This
coefficient quantization usually alters the characteristics of the system. For
instance, a stable system may be turned to an unstable one. This motivates the
study of the coefficient sensitivity minimization problem. In [1-12], two main
classes of techniques have been explored for constructing state-space descriptions
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that minimize the coefficient sensitivity: /,/l,— sensitivity minimization [1-6] and
[, — sensitivity minimization [7—12]. It has been argued in [7—12] that the sensitivity
measure based on the /, norm is more natural and reasonable relative to that based
on the /,/l,— sensitivity minimization. Alternatively, it is well known that the use of
scaling constraints can be beneficial for suppressing overflow oscillations [13,14].
Either /,— sensitivity minimization problem or frequency-weighted /,— sensitivity
minimization problem subject to /[, — scaling constraints for SISO (single-
input/single-output) state-space digital filters has been solved iteratively by
converting it into an unconstrained optimization problem with an appropriate linear
transformation [15, 16]. However, to our best knowledge, there is no study on the
minimization of frequency-weighted /, — sensitivity subject to /, — scaling
constraints for MIMO linear discrete-time systems.

In this paper, the problem of minimizing a frequency-weighted /,— sensitivity
measure subject to /, — scaling constraints for MIMO linear discrete-time systems is
investigated. First, an expression for evaluating the frequency-weighted /, —
sensitivity is introduced and the frequency-weighted /,— sensitivity minimization
problem subject to /, — scaling constraints is formulated. Next, the constrained
optimization problem is converted into an unconstrained one by using linear
algebraic techniques. An efficient quasi-Newton algorithm [17] is then applied to
solve the unconstrained optimization problem. A numerical example is also
presented to illustrate the utility of the proposed technique.

2. PROBLEM FORMULATION

Consider a stable, controllable and observable MIMO linear discrete-time
system (A4,B,C,D), described by:
x(k+1)= Ax(k)+ Bu(k) |
y(k) = Cx(k)+ Du(k)’ (1)

where x(k) is an nx1 state-variable vector, u(k) isa ¢gx1 input vector, y(k) is a
px1 output vector, and 4, B, C and D are real constant matrices of appropriate
dimensions. The transfer function of the linear system in (1) is given by:

H(z)=C(zI,-A)'B+D, )
whose (i, /)™ element is described by
-1
Hij(z):ci(zln—A) bj+dij, 3)

where



3 Minimization of frequency-weighted /,-sensitivity 397

B=[b b, - b,],
¢ dyy, dy, - dlq

C = sz D= d:21 d:22 d:Zq . “4)
Cp dpl de dpq

The frequency-weighted [, — sensitivity of the linear system in (1) is defined as
follows.

Definition 1. Let X be an mxn real matrix and let f{X) be a scalar complex
function of X, differentiable with respect to all the entries of X. The sensitivity
function of f{X) with respect to X is then defined as:

_9 _ g
Sx=oxr =5 )

Definition 2. Let X(z) be an mxn complex matrix-valued function of a
complex variable z, and let x,,(z) be the (p, g)th entry of X(z). The /,— norm of X(z)
is then defined as:

1 dz %
L TR CLICE (©)

From (3) and Definitions 1 and 2, the overall frequency-weighted
l-sensitivity measure for the linear system in (1) is defined as:

SZ,Z:Z +§é

i =1

oH,, (z)

GHZ
W ()2 ()

Wy(z)— —

ab; |,

W()aH(Z),
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where f(z) =(zl, —A)flbj and g,(z)=c,(zl,— A)"". Since term D in (2) and

the sensitivities with respect to its elements are independent of the state-space
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coordinate, they are neglected in (7). The frequency-weighted />-sensitivity
measure in (7) can be expressed as:

P q
S tr M ,(I,)

ilj

g o atr Wy ptr K, ®)

where M,(1,);;, W5, and W are obtained by the following general expression:
dz

1
X 2 o, lY(Z)Y (2) . )
with
T
Y(2)=W,(2)| f,(2)g(2)]| for X =M ,(I,),
¥Y(2) =W ([ Ced, ~ Ay ] for X =W, (10)
Y(z)=W,(z)(zI,- A)'B for X=K,.
The matrices K¢, Wg, and M (1,);; can be computed using:
K =Y F.(OF () ., Wy =) Gy (DG, (D),
=0 =0
B (11)
M, (1), =Y Hi(),H, 1),
=0
where
/ /
F,()=) we(k)A™ B, Gy()=) wy(k)CA'™,
k=0 k=0
(12)

/ /
H;()=Y A'b,c,A™, H (D), = w,(k)H,(I-k),
k=0 k=0

with wy(k), ws(k), and wc(k) denoting the unit-pulse responses of frequency-
weighting functions Wy(z), Wx(z), and Wc(z), respectively.
If a coordinate transformation is defined by:

x(k) =T "'x(k) (13)

and if it is applied to the linear system in (1), then we obtain a new realization
(4,B,C, D), characterized by:
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A T'AT, B T'B,C CT

_ _ 14
W, T'W,T, K T'KT" (14)

From (2) and (14), it is clear that the transfer function H(z) is invariant under the
coordinate transformation in (13). For the new realization, the frequency-
weighted /, — sensitivity measure in (8) is changed to
P q — —
S(T) tr T"M,(T), T qtr W, ptr K_, (15)

i1j1

where

M (T) H;(),T 'T 'H,(),. (16)

10

i

If [)-scaling constraints are imposed on the new state-variable vector Xx(k),
then it is required that:

(K),

n

(T 'KT "), 1 for i 1,2--n (17)

where K is the controllability Gramian of the state-space model in (1), defined by:
1 1 dz

K —o0 (d, A)'BB'(z'I, A")'—, (18)
2 VR ' ' z
which can be obtained by solving the Lyapunov equation:
K = AKA" + BB" . (19)

As a result, the minimization problem of a frequency weighted /, — sensitivity
measure subject to /, — scaling constraints is now formulated as follows: Given
coefficient matrices A, B and C, obtain an nxn nonsingular matrix T which
minimizes (15) subject to the l,-scaling constraints in (17).

3. PROBLEM SOLUTION

When the linear system in (1) is stable and controllable, the controllability
Gramian K is symmetric and positive-definite [18]. This implies that K'* satisfying
K =K"K" is also symmetric and positive-definite. Defining:

1

T=TK?, (20)

the /,-scaling constraints in (17) can be expressed as
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T'T' 1 for i 1,2--n ey

[

The constraints in (21) simply state that each column in T7' must be a unity

vector. If matrix 7' is assumed to have the form:

o t_l,t_z,...,t_n} )
hn ol T, -

then (21) is always satisfied. From (20) it follows that (15) is changed to

A A P q ~ A A A A A A A A
J,(T) trT M,T),T" ¢r TW,T" ptr T "KT ", (23)
i1 51
where
N, HIO),D T ELQ),
Lo
1 1
H,l), K-*H,(),K* . (24)

1 1

1 1
W, K'W,K’, K, KKK :*

From the foregoing arguments, the problem of obtaining an nxn nonsingular
matrix 7 which minimizes (15) subject to the scaling constraints in (17) can be
converted into an unconstrained optimization problem of obtaining an nxn

nonsingular matrix T which minimizes (23).
Now we apply a quasi-Newton algorithm [17] to minimize (23) with respect

to matrix T given by (22). Define:

ettt (25)

n

Then J, (f ) is a function of x, denoted by J(x). The algorithm starts with a trivial

initial point x;, obtained from an initial assignment T =1,. Then, in the kth

iteration a quasi-Newton algorithm updates the most recent point x; to point x|
as [17].

o, oz ad, (26)

where
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d, S, J(z,),
o, argminJ(x, o,d,),
S S 1 'YkT,SkYk SkSkT» Sk'YkT»Sk SkYkSkT (27)
ko1 k I
Vi, 119, Ve 8,

S, I,o, =, =z, J(z, ) J(z,).

Here, VJ(x) is the gradient of J(x) with respect to x, and S} is a positive-definite

approximation of the inverse Hessian matrix of J(x). This iteration process
continues until

(@) (=) e (28)

is satisfied where &>0 is a prescribed tolerance. If the iteration is terminated at
step k, then x; is viewed as a solution point.
The implementation of (26) requires the gradient of J(x). Closed-form
expressions for VJ(x) are given below.
[ J(T..) J,(T
JO(T) llIT(l) 0( F,Q) o( )’

by (29)
2B, B, By Bi)s

where T@c is the matrix obtained from 7 with its (€,6) th component perturbed
by A [I8,p.655]

. . Tgigegf o DT PR
T, T 1 g B, eT MA(T)yIj T'Tg,.,
€ 19 i1
A P q ~ A A AT
BQ eClT ' HA (l)ijlTHi (l)zj e

i1 110 (30)
B, qe,TW,T'Tg,, B, vpeT "K.g.,

t
9ec "t_i"/ b m tect ”tc"2 € >

where e, denotesan nx1 unit vector whose & ™ element equals unity.
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4. NUMERICAL EXAMPLE

Consider a two-input/three-output linear discrete-time system (A4,,B,,C,,D),
specified by

0 0 0072 0 150] 10
1 0 0300 0 020 0 0
Ay=|0 1 0100 0 090, B,=|0 0
00 0 0 005 0 1
00 0 1 040 0 0] G
11 27 09 04 15 1.0 08
C,=[21 31 03 02 01|, D=/03 06].
54 16 -17 -66 30 0.5 04

The frequency-weighting functions used in this example were given by a
FIR digital low-pass filter with the following unit-sample response:

0, ()= Wp ()= O¢ ()=

e (32)
=0.256322exp[—0.103203(i —4)"]
for 0<i<20, and zero elsewhere.

After carrying out the /, — scaling for the above system with a diagonal
coordinate transformation matrix, the frequency weighted /, — sensitivity of the
scaled system was computed from (8) as: S = 376.189355. Applying the quasi-
Newton algorithm in (26) to the scaled realization, after 30 iterations, we obtained

matrix T as

0961175 0303147 -0.842605 -0.179240 0.226268
_1-0.495649  1.088065  0.221605 0132055 0172347
T=| 0393141 -0.504370 1186363  0.295758 -0.140807 (33)
0375790 0152211 -0.983311 0.753533 -0.350233
-0.379810 -0.595426 -0.071203  0.023294  0.932259

or equivalently, matrix T was derived as

0.804169 -0173391 0524033 0115267 -0.3281681
0.245230  1.000748 -0.066326 -0.089143 -0.5721654

T =|-0456892 0420661 1034735 -0.805875 -0.2368884 |. (34)
-0163162 0134432 0311590 0.748686  0.0177808
0331605 0196350 0.001687 -0.348711  0.7905921
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Then, the frequency-weighted /,-sensitivity measure in (23) become
S(Py))=290.917872, (35)

and the profiles of the frequency-weighted /, — sensitivity during the first
30 iterations of the algorithm are shown in Fig. 1.
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Fig. 1 — Profiles of frequency-weighted /, — sensitivity.

5. CONCLUSIONS

We have investigated the problem of minimizing the frequency-weighted
l, — sensitivity measure subject to /,— scaling constraints for MIMO linear discrete-
time systems. After converting the minimization problem of the frequency-
weighted /, — sensitivity subject to /, — scaling constraints into an unconstrained
optimization problem, an efficient quasi-Newton algorithm has been applied to
solve the unconstrained optimization problem. The resulting coordinate
transformation matrix has then been employed to construct the optimal MIMO
system structure. Our simulation results have demonstrated the validity and
effectiveness of the proposed technique.

It is noted that the sensitivity measure in [19] considers the sensitivity
behavior of the transfer function at one frequency point to be as important as at
another frequency point. In other words, a frequency-weighted sensitivity measure
has not yet been considered in [19]. On the other hand, in this paper we consider a
frequency-weighted sensitivity measure which corresponds to the more general
case. Notice that solutions for frequency-weighted sensitivity minimization would
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be of practical use as these solutions allow to emphasize or de-emphasize the
filter’s sensitivity in certain frequency regions of interest.

Received on 9 August, 2008
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