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In this paper, a DPCM (Differential Pulse Code Modulation) system with forward 
adaptive Lloyd-Max’s quantizer is presented. This quantizer is designed for low bit 
rate, where the first and the second order linear predictors are used in the proposed 
DPCM system solution. It is shown how SQNR (Signal to Quantization Noise Ratio) 
and Gp (Prediction Gain) depend on the correlation coefficients of the predictor of the 
first and the second order. The obtained experimental values of parameters SQNR and 
Gp are presented and compared with the corresponding theoretical values for the given 
system. In this manner the selection of optimal DPCM system correlation coefficients 
values is performed and the possibilities of this DPCM system application in the speech 
coding are indicated. 

1. INTRODUCTION 

Speech coding is the process of obtaining a compact representation of speech 
signals for efficient storage and transmission over band-limited wired and wireless 
channels [1, 2]. Today, speech coders have become essential components in 
telecommunications and in multimedia infrastructure [3, 4]. A speech coder 
converts a digitised speech signal into a coded representation, which is usually 
transmitted in frames. A speech decoder receives the coded frames and provides 
the reconstructed speech signal [1–4]. In speech and image coding systems, the 
ability to intelligently adapt a quantizer in order to best match the varying input 
signal characteristics is essential for achieving high performance. In forward 
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adaptive systems, the coder does all the work by determining the optimal 
adaptation rule and by broadcasting it periodically to the decoder, which can 
therefore be kept simple. The price paid for this decoder simplicity is the increased 
complexity of the coder as well as the increased cost due to the transmission of the 
update quantizer parameters via side-information to the decoder [3, 4]. 

Realization of Differential Pulse Code Modulation (DPCM) is based on a 
technique that firstly predicts current sample value based upon previous samples 
and then performs coding of the difference between actual value of sample and its 
predicted value [1, 2]. This difference is called prediction error. Since it is 
necessary to predict sample values, DPCM is a form of predictive coding [1, 2]. In 
DPCM, code words represent differences between actual values of samples and 
their predicted values, unlike PCM where code words represent sample values. 
This is the reason of conducting the analysis presented in this paper for low bit 
rates. The goal of the paper is to obtain a solution that can be effectively applied 
for coding  of speech signals. 

A speech coding algorithm based on forward adaptive technique in which 
adaptive Lloyd-Max’s quantizer is implemented is described in [5, 6]. Although 
Lloyd and Max developed an algorithm for designing an optimal quantizer having 
a minimal possible distortion, this algorithm is too time consuming for the large 
number of quantization levels [2]. In particular, utilization of Lloyd-Max’s 
algorithm is demanding from the aspect of arithmetic complexity and memory 
resources required, which increase with the bit rate. Precisely for this reason, the 
implementation of Lloyd-Max’s quantizer is mostly limited to lower bit rates, i.e. 
to a smaller number of quantization levels, as we consider in this paper. Unlike 
[5, 6] where a PCM system is considered, in this paper we consider DPCM system. 
In addition, unlike [7] and [8], where in DPCM system the optimal companding 
quantizer is designed and used for high bit-rate speech coding, in this paper we 
utilize Lloyd-Max's quantizer for low bit-rate speech coding. Lloyd-Max's 
quantizer is an optimal quantizer for the given probability density function and is 
simple for design and implementation only for low bit-rates. As highlighted in 
[5, 6] for high bit-rates Lloyd-Max's quantizer is complex to design and, accordingly, 
an optimal companding quantizer, which is simpler to design and which has 
performance close to the optimal one, is more preferable. However, for low  
bit-rates, we consider in this paper, performances of optimal companding 
quantizers are far from the optimal. As in [5], in this paper forward adaptive 
technique is utilized. Specifically, forward adaptive technique is applied to DPCM 
system in which a linear predictor is designed so that its coefficients are 
determined from the correlation coefficients of an input signal. The simple DPCM 
speech coding scheme with the first order switched predictor and forward adaptive 
quantizer is presented in [7]. The quantizer is realized using the companding model 
and it is adapted to a short-term estimate of the input signal standard deviation on 
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each frame. An adaptive speech coding scheme based on an optimal companding 
quantizer and the utilization of correlation is presented in [8]. The main idea in 
both papers is to provide coding of speech signals at high bit rates with the 
performance improvement over the PCM by exploiting a correlation between 
samples within frames, where a higher correlation, a higher improvement. The idea 
with the utilization of the speech signal prediction has also been observed in [9], 
where linear predictive coding has been observed. Specifically, different from the 
quantizer presented in this paper, belonging to the class of waveform coders, in [9] 
a quantizer from the class of parametric coders has been observed, where only 
similarity in approaches is in the utilization of the prediction. Due to the 
significance of correlation in DPCM system, in this paper we study the influence of 
correlation coefficients on SQNR. The rest of the paper is organized as follows: In 
section 2 a detailed description of Lloyd–Max’s quantizer design is given. 
Theoretical background of DPCM system is provided in section 3. Section 4 
presents and discusses numerical results. Finally, section 5 is devoted to the 
conclusions which summarise the contribution achieved in the paper. 

2. LLOYD-MAX’S QUANTIZER 

Lloyd and Max proposed an algorithm for designing optimal quantizers using 
mean-square error distortion measure [1, 2, 10–12]. The most commonly used 
criterion by which the set of the optimal parameters of a quantizer is determined is 
the criterion of minimum distortion. Necessary and sufficient conditions for a 
quantizer optimality for a mean-square distortion measure are described in 
[1, 2, 10–13]. In accordance with the above mentioned criterion, for a fixed number 
of quantization levels N, necessary conditions for optimality of the decision 
thresholds t1, t2, ..., tN-1 and the representation levels y1, y2, ..., yN, are derived by 
differentiating (finding the first derivative) the following expression for distortion: 
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where t0 = – ∞ and tN = ∞. These conditions yield: 
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where k is a number of iterations (k = 0,1,...). The procedure for determining the 
thresholds and the representation levels is an iterative procedure. Condition for the 
termination of the procedure is that the relative change of distortion in two 
successive iterations is less or equal than 0.005 [6].  

In this paper, the input signal is modelled by Laplacian probability density 
function (PDF) [2], where the design of the Lloyd-Max’s quantizer is performed 
for the low bit rates by using the optimal design parameters specified for these bit 
rates in. 

3. THEORETICAL BACKGROUND OF DPCM SYSTEM 

DPCM is a technique of converting an analog into a digital signal in which an 
analog signal is sampled and then the difference between the actual sample value 
and its predicted value is quantized. A predicted value of the actual sample is based 
on the value of the previous sample or the values of the previous samples [1, 2]. 
Basic concept of DPCM is based on the fact that most source signals show  
a significant correlation between successive samples so that quantizer uses 
redundancy in sample values which provides lowering bit rate [1, 2]. Fig. 1 
illustrates our DPCM system with a Lloyd-Max’s quantizer in the adaptive scheme. 

The input signal x[n] is processed in a frame by frame manner. The first, 
samples in a current frame pass through the buffer, and then a gain g is calculated 
and quantized. Based on the so obtained quantized gain, Lloyd-Max’s quantizer 
adaptation is performed. In the feedback loop of DPCM system there is a fixed 
predictor and at its output a predictive signal [ ]nx̂  is obtained. The samples values 
of the signal difference d [n] is equal to the difference between the current values 
of the input samples x [n] and their predictive values [ ]nx̂ . Quantizer of the signal 
difference d[n] is a Lloyd-Max's quantizer designed for low bit rate, which is 
applied in the adaptive scheme. The process of adaptation involves normalization 
of samples of the signal difference d[n] by using quantized gain ĝ . Gain g is 
defined as the square root of the estimated variance of the signal difference σd

2 (6), 
for each frame separately [2]: 
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where σx
2 is the variance of an input signal within a given frame, M is the frame 

lenght, P is the order of the predictor, ρi and ai, i = 1, ..., P are correlation 
coefficients of the input signal and coefficients of the Pth order predictor. 
 

 
Fig. 1 – DPCM system: a) coder; b) decoder. 

For gain quantization (g = σd) we use the log-uniform quantizer, since in [5] it 
is shown that the log-uniform quantizer has a better performance than the uniform 
quantizer. Representation levels of the considered gain quantizer are determined by 

( ) 2/)12(log20)ˆ(log20 min1010 ∆−+σ= igi , i = 1, ..., Ng, where ∆ = 20log10(σmax/σmin)/Ng 
and where dynamic range of the signal difference variance is defined by 
[20log10(σmin), 20log10(σmax)] and Ng is the number of the quantization levels of the 
gain quantizer. Accordingly, it holds 1ˆ ˆ ˆ{ , ..., }

gNg g g∈ . Each sample of the signal 

difference from a specific frame is normalized by the quantized value of the gain 
ĝ , thus adapting to the fixed Lloyd-Max’s quantizer, which is designed for σd = 1. 
Due to the quantization error ggeg ˆ−= , adaptation of samples of the signal 
difference d[n] is not perfect. In forward adaptive schemes an information of the 
quantized gain value (index j in Fig. 1) is transferred to the receiving part of the 
DPCM system (decoder, Fig. 1b), in order to enable denormalization of samples of 
the signal difference and reconstruction of the output signal samples y[n]. 
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Functional dependency of coefficients of the Pth order predictor ai on 
correlation coefficients of the input signal ρi , i = 1, ..., P is well known [2]. For the 
cases considered in this paper, when the order of predictor are P = 1 and P = 2, the 
coefficients of the fixed predictor are defined as follows: 

 11 ρ=a , P =1, (7) 
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Prediction gain Gp of DPCM system is defined by [2]: 
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By combining (9) with (6) for Gp one obtains: 
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It can be observed that for a given the Pth order predictor, Gp depends only on 
correlation coefficients ρi and on coefficients of predictor ai, i = 1, ..., P. 

For evaluation of the quality of the quantized signal, signal to quantization 
noise ratio is usually used SQNR = 10 log (σx

2 / D) [1, 2], where D is a distortion 
inserted by quantization procedure. Since in this paper we assume frame by frame 
procession, SQNR for a signal of L frames, each of length M, is then determined by 
[1, 2]: 
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where subscript F here only denotes the ordinal number of frame and where it 
holds [ ] [ ] [ ] [ ]ndndnynx FFFF

ˆ−=− . Considering (9) and (11) one can rewrite: 

 pLMDPCM SQNRSQNR G+= , (12) 



 Zoran Perić et al. 7 
 

 

430 

where SQNRLM is SQNR of the applied Lloyd-Max’s quantizer: 
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From equations (7)–(10) one can notice that Gp depends on the correlation 
coefficients ρi, i = 1, ..., P of an input signal x[n]. This observation allows analysis 
of the whole DPCM system, i.e. analysis of SQNRDPCM (12), depending on the 
assumed values of correlation coefficients ρi, i = 1, ..., P of an input signal x[n]. 
The obtained results are presented in the following section. 

4. NUMERICAL RESULTS 

By equations (8) and (10), for P = 2 is defined the dependence of prediction 
gain Gp on correlation coefficients ρ1 and ρ2. Fig. 2 shows the dependence of Gp on 
ρ2 for the following ρ1 values: ρ1 = 0.70, ρ1 = 0.80 and ρ1 = 0.85. 

 

Fig. 2 – Theoretical dependence of prediction gain Gp on 
correlation coefficients ρ1 and ρ2. 

These graphs represent the theoretical dependence of Gp on ρ1 and ρ2, where 
a wider range of ρ2 values is presented than the range from which it takes ρ2 in 
realistic calculations. Namely, the coefficient ρ2 always takes the lower value of 
coefficient ρ1 [1, 2, 8]. By appropriate choice of coefficients ρ1 and ρ2 one can 
drastically increase the value of Gp. Accordingly, as will be seen in the following 
analysis, we propose the choice of coefficients ρ1 and ρ2 to provide the maximum 
of SQNRDPCM.  
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In Figs. 3, 4 and 5 the experimental results are presented as functional 
dependencies of SQNRDPCM on ρ1 and ρ2. The analysis was done on a recorded 
speech signal of 12000 samples, which was sampled with the frequency of 8 kHz, 
for the case where the frame length amounts to M = 200. The results were obtained 
by applying (11) on the whole available speech signal for all assumed the values of 
coefficients ρ1 and ρ2. Fig. 3 shows the dependence of SQNRDPCM on ρ1 for the 
first-order predictor, and two values of bit rate of quantizer R = 2 bit/sample and 
R = 3 bit/sample. The maximum values of SQNRDPCM are obtained for the values of 
ρ1 = 0.81 and ρ1 = 0.87 for R = 2 bit/sample and R = 3 bit/sample, respectively (see 
Table 1). Thus, the maximum value of SQNRDPCM is not achieved for the same 
value of ρ1 at different bit rates R, and accordingly, predictor needs special design 
for different values of R.  

 

 
Fig. 3 – Dependency of SQNRDPCM on ρ1 for P = 1, 

R = 2 bit/sample and R = 3 bit/sample. 

Table 1 

The maximum value of SQNRDPCM obtained for the specific values of ρ1 and ρ2 

P = 1 P = 2 
R [bit/sample] ρ1 SQNRDPCM [dB] ρ1 ρ2 SQNRDPCM [dB] 

2 0.81 13.14 0.82 0.51 14.79 
3 0.87 19.11 0.86 0.57 21.47 
 
Figs. 4 and 5 show the dependence of SQNRDPCM on ρ1 and ρ2 for the second-

order predictor. In Fig. 4, this dependence is shown for R = 2 bit/sample, and in 
Fig. 5 for R = 3 bit/sample. Figs. 4 a and 5 a show the 3D dependencies of 
SQNRDPCM on ρ1 and ρ2, whereas in Figs. 4 b and 5 b the dependencies of 
SQNRDPCM on ρ2 are shown for several fixed values of ρ1. The maximum value of 
SQNRDPCM is obtained for ρ1 = 0.82 and ρ2 = 0.51 for R = 2 bit/sample whereas for 
R = 3 bit/sample the maximum value of SQNRDPCM is obtained for ρ1 = 0.86 and 
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ρ2 = 0.57 (Table 1), i.e. for the highly correlated cases. In the case of the second-
order predictor, the maximum value of SQNRDPCM can not be achieved for the 
same value of pairs ρ1 and ρ2 for a different R so that predictor needs special design 
for different R. 

 
Fig. 4 – Dependency of SQNRDPCM on ρ1 and ρ2 for R = 2 bit/sample and P = 2: a) 3D; b) 2D. 

 
Fig. 5 – Dependency of SQNRDPCM on ρ1 and ρ2 for R = 3 bit/sample and P = 2: a) 3D; b) 2D. 

Based on the equations (1), (10), (12) and (13), the functional dependence of 
SQNRDPCM on variance of frame of an input signal σx

2 is determined, in the 
assumed  dynamic range of σx

2 in dB scale of [–20dB, 20dB] [2]. This dependence 
is shown in Fig. 6. The analysis is performed for the second order predictor, and 
the two values of bit rate of quantizer R = 2 bit/sample and R = 3 bit/sample. For 
the values of coefficients ρ1 and ρ2, the values determined by the experimental 
analysis were used (Table 1), which achieves maximum value of SQNRDPCM. From 
the Fig. 6 one can observe that SQNRDPCM has approximately constant value in the 
whole range σx

2 in dB scale. The reason for that behavior of SQNRDPCM lies in 
application of forward adaptation. Obviously the SQNRDPCM characteristic is 
periodical where the number of periodical intervals equals to the number of 
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quantization levels of the log-uniform gain quantizer (Ng = 16). For R = 2 bit/sample 
the maximum value of SQNRDPCM amounts to 13.61 dB, where SQNRLM = 7.54 dB 
and Gp = 6.07 dB, whereas for R = 3 bit/sample the maximum value of SQNRDPCM 
amounts to 21.06 dB, where SQNRLM = 12.64 dB and Gp = 8.42 dB. These values 
are noted in Table 2 by index “theor”, because its represent the theoretically obtained 
results. In the same table, there are the experimentally obtained values 
SQNRDPCM

exp, SQNRLM
exp and Gp

exp calculated for the available speech signal. One 
can notice that the experimentally obtained results are better than the theoretically 
obtained results. The reason is that the experimental results were obtained for the 
values of ρ1 and ρ2 that are optimal for the available speech signal.  

 

Fig. 6 – Theoretical dependence of SQNRDPCM on the variance 
of an input signal σx

2. 

Table 2 

Theoretical and experimental values of SQNR and Gp  
for the selected values of ρ1 and ρ2 and P = 2 

R [bit/sample] SQNRLM
theor 

[dB] 
SQNRLM

exp 
[dB] 

Gptheor 
[dB] 

Gpexp 
[dB] 

SQNRDPCM
exp 

[dB] 
2 7.54 8.60 6.07 7.48 14.79 
3 12.64 13.33 8.42 8.96 21.47 

5. CONCLUSION 

In this paper, an analysis of DPCM system with forward adaptive Lloyd-
Max’s quantizer designed for low bit rate and with a linear predictor of the first and 
the second order is carried out. It is shown that the values of correlation 
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coefficients in the design of the linear predictor of DPCM system have a large 
impact on the SQNRDPCM. By applying the proposed DPCM system on the 
available speech signal, the conclusion has been derived that for different bit rates 
of Lloyd-Max’s quantizer a separate choice of correlation coefficients should be 
done to obtain the highest value of SQNRDPCM. The presented features of our 
DPCM system solution indicate that the obtained solution should be of practical 
significance for quantization of highly correlated signals that as well as speech 
signals have Laplacian probability density function. 
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